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ABSTRACT*

 
Various approaches have been proposed in the 

past for monitoring a network to diagnose failures and 
performance bottlenecks. One such approach for efficient 
and effective monitoring is probing. Probes such as ICMP 
pings are an effective tool for detecting network nodes that 
have been compromised by an attacker who tries to delay 
or drop traffic passing through the captured node. 
However an intelligent attacker may evade detection by 
giving preferential treatment to probe traffic. This is 
usually possible because probe packets have a different 
format from regular application packets and are easily 
distinguishable. Hence, it is important to probe in a 
stealthy manner so as to avoid identification of probes by 
an attacker and to ensure the collection of accurate system 
health statistics. In this paper, we review design 
approaches for generating stealthy probes and describe 
various possible mechanisms that can be used for such a 
design. These approaches are evaluated according to the 
design criteria and we identify what may be feasible 
solutions for stealthy probing in battlefield ad-hoc wireless 
networks. 

1. INTRODUCTION 
 
With the objective of providing seamless end-to-end 
services, various approaches have been proposed in the 
past for monitoring a network to diagnose failures and 
performance bottlenecks. One promising approach for 
efficient and effective monitoring is probing [1,2,3]. 
Probing based approaches involve sending test transactions 
over the network to monitor the health and performance of 
various network elements. Success or failure of these test 
transactions, called probes, depends on the success or  
 
* Prepared through collaborative participation in the 
Communications and Networks Consortium sponsored by 
the U.S. Army Research Laboratory under the 
Collaborative Technology Alliance Program, Cooperative 
Agreement DAAD19-01-2-0011. The U.S. Government is 
authorized to reproduce and distribute reprints for 

Government purposes notwithstanding any copyright 
notation thereon. 
 
failure of the network elements being tested. Probes can be 
of various types such as one-packet probes [4], packet-pair 
probes [5, 6], packet-train probes [7], etc. Probes are used 
to monitor a wide array of performance parameters 
including delay, loss, available bandwidth, traffic 
composition, routing behavior, etc. Currently, pings and 
traceroutes are the most popular probing tools to detect 
network availability. Examples of various other probe uses 
include Jacobson’s [4] one-packet probes in pathchar to 
estimate link bandwidth from round trip delays of different 
sized packets sent to successive routers along a path. 
Skitter [8] uses traceroute like probes for tracking Internet 
topology. PathChirp [9] uses packet-pair probes for 
estimating available bandwidth on a path. 
 
Most probing methods employ probes that do not resemble 
non-probe traffic generated by regular applications. Such 
probes might experience different network conditions as 
compared to regular application traffic. There could be 
various reasons for the different treatment of probe traffic. 
Probes that require intermediate nodes to do processing 
(e.g. traceroutes) might be given lower priority by the 
routers. End-hosts might block certain protocols (IPMP 
[10], ICMP [11]) used by probe traffic.  
 
Another more daunting possibility is the identification of 
probe traffic by a malicious entity within the network that 
creates the illusion of a healthy network service for the 
probe traffic. Consider an attacker that probabilistically 
drops or delays packets of regular application traffic. Such 
an attacker can manage to stay undetected by giving 
preferential treatment to probes to keep the probe stations 
unaware of the malicious drops and delays along the probe 
path. Another example could be of malicious routing [12]. 
Probes can be used to detect the inconsistency between the 
advertised and actual routes for end-to-end paths affected 
by an attack. However, if an attacker can identify the probe 
traffic, it can treat probes in a different manner, possibly 
allowing probes to pass through the correct routes, thus 
avoiding detection by the probes.  
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Hence, there is a need for methods to conduct probing in a 
stealthy manner preventing the intermediate malicious 
nodes from misleading the probing nodes by treating the 
probe packets differently from normal packets. We refer to 
this probing approach as Stealthy Probing. When probes 
are made stealthy, the intruders are not able to distinguish 
probe traffic from regular application traffic. So they drop 
both probe as well as application traffic making it possible 
for the probing nodes to detect the presence of intrusion.  
 
In this paper, we identify design issues for a mechanism to 
generate stealthy probes. We also propose alternative 
design strategies for probes that are similar to regular 
application traffic but are constructed in such a manner 
that only the sender and recipient of the probes can 
distinguish the probe traffic from the application traffic. 
We also will discuss various issues involved in 
constructing the stealthy probes for a wireless network 
environment and present possible design approaches for 
implementing such probes.  The main contribution of this 
paper is that it advances the state of the art in stealthy 
probing designs by proposing various approaches to the 
solution of the problem. These approaches are evaluated 
according to the design criteria and we identify what may 
be feasible solutions for stealthy probing in battlefield ad-
hoc wireless networks. 

2. RELATED WORK 
 
In the past, very little work has been done on stealthy 
probing. Avramopoulos and Rexford [13] proposed a 
lightweight data plane approach by creating an encrypted 
tunnel between two routers and diverting both probe and 
regular traffic into the tunnel to make probe and regular 
traffic indistinguishable. The secure traceroute proposed 
by Padmanabhan and Simon [14] securely traces the path 
of the existing traffic, thus preventing the routers from 
misleading specialized traceroute packets by treating them 
differently from normal traffic packets. We presented a 
detailed survey of past approaches on stealthy probing in 
[15].  
 
There are several limitations in the stealthy probing 
research done in the past. Many proposed approaches 
demand heavy instrumentation or added processing 
overhead at the intermediate nodes.  The attackers may 
manifest themselves in innovative ways, defeating many 
proposed strategies that provide defense only against 
specific attacks. Many proposed defenses become 
infeasible and ineffective due to the lack of deployment 
incentive at various areas of the network. The growing use 
of wireless networks opens another array of vulnerabilities 
to address while developing stealthy probing strategies. 
In the past, packet stamping has been used by many 
researchers for developing defense mechanisms against 

denial of service attacks. Yaar et al. [16] proposed StackPi, 
where a 16-bit path identifier (Pi) is assigned to each 
packet and is stored in the IP identification field. The Pi-
marks are generated as the packet flows along its path to 
its destination. All packets traversing the same path 
receive the same marking. Yang et al. [17] also proposed a 
mechanism where the sender first acquires a token from 
the destination, representing the capability to send, and 
then stamps the packets with the capability. These packets 
are verified at the intermediate verification points on the 
way to the destination for the presence of the valid 
capability. A capability is valid for a limited time and 
packet count, and needs to be renewed for further 
communication. Capabilities are generated by the 
destination using a chain of one-way hash functions. 
Careful design and evaluation of a more complete 
capability-based architecture, called Traffic Validation 
Architecture (TVA), was proposed by Yang et al. [17]. 
Another capability-based mechanism was proposed by 
Yaar et al. [18], where routers provide path specific 
information that is aggregated by the destination to 
generate a capability. The sender inserts this capability in 
the subsequent packets. Routers on the way verify the 
capability for the correctness of their part of the 
information in the aggregated capability. Routers change 
their capability marking periodically and the new 
capability value is communicated to the sender. Routers 
keep a window of keys as valid at any one time. The 
packet stamping approach most relevant to our approach 
was proposed by Wang et al. [19], which uses an access 
control mechanism, called Easy-pass, to prevent 
unauthorized access to network resources. A unique pass is 
attached to each legitimate IP packet, and this pass is 
verified by an ISP edge router to provide access to the 
protected network resource. 
 
We propose to develop stealthy probes by stamping the 
packets in such a fashion that the probe traffic is 
indistinguishable from the regular traffic to all nodes not 
knowing the legitimate stamp sequence. Like the proposed 
distributed denial of service (DDoS) defense mechanisms, 
stealthy probing requires dynamically changing stamps, 
insertion of stamps at the source, and verification at the 
destination. However, unlike the stamping mechanism 
used for the DDoS defense mechanisms mentioned above, 
routers en-route cannot be used to generate and/or validate 
the stamps. Also, unlike the defense mechanism, only the 
probe packets are stamped with the capabilities. 
Furthermore, the stamping needs to be stealthy to prevent 
unauthorized nodes from identifying stamped packets from 
unstamped packets.  
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3. DESIGN ISSUES 
 
Various design issues need to be addressed while 
developing a stealthy probing mechanism in a battlefield 
ad-hoc wireless network. In this section, we describe these 
issues and explain the rationale behind our choice of 
system design. 
 
3.1 How to send probes 
 
Probes can be sent separately from the regular traffic or 
can be piggybacked on the regular application traffic. 
There are various design issues involved in both 
approaches to keep the probes stealthy. 
 
As shown in Figure 1a, one design approach is to develop 
probes resembling application traffic on the desired probe 
path and insert the probe packets within the stream of 
application packets giving the impression that probe 
packets are actual application traffic.  Thus, probe packets 
need to be designed to have the same protocol and port 
numbers, and consistent sequence and acknowledgement 
numbers as the rest of the application traffic. A 
challenging task is to maintain consistent sequence and 
acknowledgement numbers between the probe and 
application packets as well as filtering and extracting 
probe traffic from the real application traffic. 
 
Another approach to inserting probe traffic stealthily could 
be to piggyback probe traffic over the already existing 
application traffic as shown in Figure 1b. In this approach, 
instead of creating new packets, probe information is 
embedded into the application packets that are already 
being sent over the probe path. This approach avoids the 
problem of developing new probe packets and making 
them consistent with the regular application traffic. 
However, care needs to be taken while embedding the 
probe packets on the application packets to ensure that the 
application packets (header and data) stay consistent with  
 
 

the regular application traffic. There is also a need for 
some technique to extract the probe information from 
application packets at the destination. A drawback of this 
approach is that it depends on the availability of existing 
application traffic to probe a certain network path. Thus, 
there still is a need for developing separate probe packets 
resembling application traffic to be sent on a probe path 
when regular application traffic is infrequent. 
 
3.2 How to distinguish probe traffic from regular 
traffic 
 
In the two approaches described previously, when solving 
the problem of making probes indistinguishable from 
regular application traffic, care needs to be taken to ensure 
that the probes are still distinguishable at probe endpoints; 
otherwise, the destination will not be able to identify and 
extract the probe information from the stream of 
application packets. If the probes are sent as separate 
packets, a mechanism is needed at the destination node to 
identify the probe packets from the application packets, 
and likewise, when a response is generated, a similar 
mechanism is needed for the source to identify the probe 
responses. Similarly, if the probes/responses are 
piggybacked over the application packets, the destination 
node must be able to identify the application packets that 
contain piggybacked probe information. Once such 
packets are identified, the destination node needs a way to 
extract the piggybacked probe information from the 
application packets. It is also important that this ability to 
distinguish probes from application packets be limited to 
the source and destination nodes. Intermediate nodes must 
not be able to make this distinction; otherwise, the probes 
will not be stealthy. Furthermore, since various sources 
may need to probe various destinations, any of the network 
nodes may be potential probe end-points. For this reason, 
the scheme cannot rely on secrecy of design to provide 
stealthiness. In subsections 3.2.1–3.2.4, we discuss various 
ways to identify stealthy probes at the probing end-points. 
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3.2.1 Using pseudo-random sequence 
 
One possible approach could be to use a pseudo-random 
sequence to insert probe information in the application 
traffic. The two end-nodes pre-agree on the seed s to 
generate the pseudo-random sequence. The two end-nodes 
then generate the pseudo-random sequence starting with 
the seed s and insert the probe information into the 
appropriate application packets based upon this sequence 
as shown in Figure 2. Figure 2a shows a naïve scheme in 
which probes are inserted in regularly spaced packets, 
while Figure 2b shows how the pseudo-random sequence 
is used to select the packets that contain probes. Probes are 
normally piggybacked on the application packets. In case 
of unavailability of application traffic, independent probe 
packets are sent making the packets resemble application 
traffic. Each probe packet (piggybacked or independent) 
contains information about the location of probe 
information at a predefined location in the packet. After 
identification of the probe packet based on the pseudo-
random sequence, the destination node uses this 
information to locate the probe information within the 
packet. This approach is simple and easy to implement; 
however, it is vulnerable to packet losses and reordering. If 
some packets in the sequence are lost or are delayed so 
they reach the destination after packets transmitted later, 
the destination will not be able to identify the probes 
correctly. For this reason, this scheme should only be used 
for applications that use a reliable transport mechanism 
such as transmission control protocol (TCP). 
 
3.2.2 Using packet stamping 
 
Another implementation approach is to stamp the probe 
packets with a ticket that is known to both the source and 
destination nodes. This approach, unlike the previous 
approach using pseudo-random sequence, is robust to loss, 
delay, and reordering of packets. As in the previous 
approach, in the presence of application traffic the probes 
are piggybacked over the application packets. In the 
absence of application traffic, separate probe packets are 
sent making the packets resemble the regular application 
packets. In both cases, the packet that contains a probe is 
stamped by the currently valid stamp. The packet contains 
the probe information at a predefined place in the packet, 
and this information is used by the destination node to 
extract the probe out of the received packet. 
 
The packet stamps for this purpose must have the 
following properties:  
 Inconspicuous: Stamping should be inconspicuous to 

prevent detection of stamps and consequently the probes 
by the attacker. Thus, stamps should not require use of  

 
additional fields in the network packets that are not used 
by regular application packets. One approach to meet 
this requirement is to use a header field of some layer in 
the existing network stack, e.g., the identification field, 
or type of service field in the IP header. Furthermore, 
packets of the regular network traffic should also be 
stamped with random values to avoid detection. 

 Dynamically changing: Using the same stamp value for 
all probe packets reveals a traffic pattern that can be 
used by the attacker to detect probe traffic; hence, 
stamps should be changed dynamically. 

 Hard to predict: Stamps should be changed in such a 
manner that the attacker cannot infer any pattern in the 
changed stamps. Identification of any such pattern can 
allow the attacker to predict the next stamp and thus 
detect the next probe packet. 

 Lightweight: The stamp generation, embedding, and 
verification process should not incur significant 
computational overhead or network traffic. 

 Robust: Stamping verification should be robust to loss 
and reordering.  
 

3.2.3 Generation of a series of stamps 
 
In this section, we present approaches to dynamically 
change the stamp values, while preserving the proposed 
stamp properties. The objective here is to be able to 
change the stamp dynamically, at the same time making 
both communication ends aware of the changed stamp. 
While changing the stamp, it is important to make the next 
stamp value hard to predict to prevent an attacker from 
identifying the stamp and thus identifying the probes. In 
order to change the stamp value periodically, we propose 
two approaches.  

 
In the first approach presented in Figure 3a, the source and 
destination node agree upon a seed s and a key k. Starting 
with the first stamp s, both ends build a series of stamp 
values by applying a function f() on the previous stamp 
value. The sender encrypts its stamp value using a function  
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g() and the key k. The receiver decrypts the stamps by 
applying the inverse hash function g-1() with the key k. The 
receiver then verifies the decrypted stamp value with the 
stamp series computed at its end using the function f(). 
 
We present another approach shown in Figure 3b, which is 
based on dynamically changing packet stamps using a 
chain of one-way hash functions. As in the previous 
approach, the two end-nodes agree on the initial seed s and 
the hash key k. The client then builds a chain of values by 
repeatedly applying the hash function on the previous 
value. Thus, starting with a seed s, the client builds a series 
of values, h(s,k), h(h(s,k)), h(h(h(s,k))), and so on. The 
sender then uses these stamps in the reverse order in this 
sequence, thus using the stamp h(h(h(s,k))) before h(h(s,k)) 
before h(s,k).  Once the list is exhausted, the sender restarts 
with the last element of the list as the next stamp. The 
destination stores the initial seed s and the hash-key k. The 
destination performs multiple hash operations on the seed s 
to obtain the currently active stamp and compares the 
incoming packets with the desired stamp value to identify 
probes. 
 
3.2.4 Changing stamp value 
 
For implementation of a dynamically changing stamping 
mechanism, the life-time of a stamp could be time-based 
[18] or traffic-based [17]. That is, the stamps could be 
changed after expiration of a certain time interval or after 
exchange of certain number of packets. In the past, 
researchers have used both approaches while proposing 
dynamically changing stamps. Time-based stamps avoid 
the overhead of maintaining packet counts required for 
traffic-based stamps. However, as time-based stamps allow 
a client to use the stamp to send as many packets as  
 

desired within the stamp life-time, this approach could 
reveal a traffic pattern if large amounts of probes are sent 
within the stamp life-time.  
 
The process of updating the stamp at both sender and 
receiver can be done in several ways; we discuss two of 
these ways. (1) Both sender and receiver can mutually 
agree on an update mechanism (time-based or traffic-
based) and individually update the stamp value. To update 
the stamps after a certain time interval, the sender and 
receiver need to have synchronized clocks. For traffic-
based stamp update, sender and receiver need to maintain 
traffic statistics and also address the scenario of dropped 
and delayed packets. (2) Another approach to updating the 
stamp value is to make one node decide the next stamp 
value and inform the other node of the changed stamp. For 
instance, the receiver node can inform the sender of the 
new stamp after expiration of certain time interval and/or 
after receiving certain number of probe packets. This 
mechanism, however, involves additional communication 
overhead between the two end-points. 
 

4. PROPOSED SYSTEM DESIGN 
 

In this section we propose a design for implementation of 
stealthy probing. We propose to generate probe traffic that 
looks similar to the application traffic; however, we stamp 
the probe packets with stamps known only to the sender 
and receiver. Probe traffic is identified at the receiver by 
identifying the valid stamps. The generation and insertion 
of stamps is done in such a manner that attackers cannot 
identify probe packets as being any different from regular 
application packets. We first discuss the procedure of 
sending and receiving probes, and then we present our 
approach to generate, embed, and verify stamps. 
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4.1 Generation of probe traffic 
 
Probe traffic should be designed such that the probe 
packets look similar to the application packets commonly 
present in the application traffic in the network under 
consideration. In the scheme proposed here, we consider 
HTTP traffic to be present as regular application traffic in 
the network, and hence, disguise the probe packets to look 
like HTTP packets. Thus, the probing application program 
generates probe packets similar to HTTP packets and 
inserts a stamp in the IP header. We use a 16-bit stamp 
and place it in the IP identification field of the IP header. 
The IP identification field is used by the routers to identify 
fragments of a packet during fragmentation. This is not a 
problem because even if the packet is fragmented en-route, 
the fragments would be reassembled by the IP layer at the 
destination before the stealthy probing algorithm uses the 
ID field to detect a received probe packet. 
 
The receiver checks the received packets for valid stamps. 
On identifying a packet with a valid stamp, the packet is 
forwarded to the probing application. To avoid detection of 
any specific pattern in the stamps inserted in the probe 
packets, the stamps are changed for each packet and 
regular application packets are also stamped with random 
values that do not form valid stamps. Figure 4 presents the 
steps involved in sending and receiving the probe packets, 
showing a probing application sending and receiving 
probes using UDP port 1600. The sender disguises probe 
packets as HTTP packets, but inserts a stamp in the IP 
identification field. The receiver, on observing a valid 
stamp, extracts the probe part of the packet and forwards it 
to the appropriate probe receiving application. 
 
4.2 Stamping 
 
We now present our approach to generating stamps. The 
stamps are designed to have the following properties: 
 
 Stamps are 16 bits long so that the stamp can be inserted 

in the IP identification field. 
 Stamps are made unique for each packet to avoid 

detection of any pattern in the probe traffic. 
 The change in the stamps is made difficult to predict. 
 
We present two approaches of generating the stamp 
sequence. 
 
 
 

4.2.1 Approach 1: Sender and receiver independently 
generate stamp sequence. 
 
The sender and receiver exchange a secret k and an initial 
seed s. As shown in Figure 3a, both sides then generate a 
sequence of stamps using a function f(). This function 
builds the new stamp from the previous stamp value. The 
resulting stamp value is then encrypted using the secret k. 
Each outgoing probe packet is stamped with a unique 
stamp value encrypted in this manner. 
 
Both the sender and receiver maintain a window of w 
stamps. These w stamps represent currently active stamps. 
The sender uses the window to ensure that a random value 
inserted as a stamp in the regular application packets is not 
present as a stamp in the window. This check prevents a 
regular application packet from being mistaken as a probe 
packet by the receiver. The receiver maintains a window to 
accept out-of-order probe packets.  
 
 

 
 
 
4.2.2 Approach 2: Only receiver generates stamp 
sequence 
 
In the second approach, stamps are generated only at the 
receiver. The receiver generates a sequence of stamps by 
performing multiple iterations of a one-way hash function 
and then using the last stamp in the sequence first. The 
sender performs an initial handshake with the receiver to 
obtain the first stamp and a secret k. One stamp is used for 
multiple packets by the sender; however, to insert a 
different value in the ID field for each probe packet, the 
sender hashes the stamp with the secret k and some of the 
packet content that changes with every packet but does not 
change for a single packet from source to destination. One 
example of such a field is the TCP sequence number.  
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The receiver performs a similar operation on the received 
packet to verify the stamp and then updates the stamp 
value after expiration of t seconds and updates the sender 
with the new stamp. To accept out of order probe packets, 
the receiver accepts packets with the current stamp or a 
previous stamp value. 
 

6. CONCLUSIONS AND FUTURE WORK 
 

In this paper we have proposed various design approaches 
for a mechanism to generate stealthy probes. We have also 
discussed possible mechanisms for identification of probes 
at probing endpoints. Finally, we have proposed a system 
design and discussed how earlier approaches could be 
applied to such a design. Our future work would be to look 
at other possible system designs and to implement and test 
their correctness and effectiveness in a wireless ad-hoc 
battlefield environment.  
 
The views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressed or 
implied, of the U.S. Army Research Laboratory or the U.S. 
Government. 
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